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Abstract

We develop a mathematical model to describe an adsorption process in which
two species compete to occupy the available sites on the adsorbing particles.
The governing equations consist of a standard advection-diffusion and a kinet-
ic equation for each species, the latter consisting of two groups of terms: one
related to individual adsorption processes and the second describing all the
interaction between the two species. Once the relevant variables are scaled
and the dimensionless parameters have been identified, the system is solved
numerically and validated against experimental data.

1 Introduction

One practical method of removing a contaminant from a carrier fluid is column sorp-
tion, either through absorption or adsorption. Column sorption involves passing a
fluid through a tube filled with a material capable of capturing certain components
of the fluid. The mathematical model for describing the adsorption process of a
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2 Adsorption of multiple contaminants form a fluid stream

single contaminant has been widely studied in recent years, see [1, 2, 3, 4]. How-
ever, a carrier fluid typically contains more than one contaminant which results in
significantly more complicated kinetics [5, 6, 7]. Mathematically, the process is also
much more complicated since multiple moving boundaries may exist while interac-
tion, due to the competition for adsorbent sites, must be accounted for. The process
is depicted in Figure 1, where a mixture of a carrier gas (green molecules) and two
contaminants (blue and red molecules) are introduced at the column inlet and then
start attaching to the adsorbent. While this occurs, the contaminants compete with
each other and may displace each other from occupied sites.

To be able to develop a correct mathematical model that accounts for individual
and competitive adsorption, we will first discuss the relevant chemical reactions
and will then extend the recently validated model discussed in [4]. To reduce the
complexity of this first study, we will focus on the case where 2 contaminants are
present and where one is dominant (meaning that it displaces the other, but is not
itself displaced).

Adsorbent

Flow

Adsorbent

Flow

Figure 1: Schematic of the competitive adsorption process. Here, the blue contam-
inant is displacing a previously adsorbed red molecule.

2 Key variables

The concentration per unit length of each contaminant in the fluid will be denoted
by ci. This variable represents the average over a cross-section of the column, the
averaging process is detailed in [4, 9].

The adsorbed material is typically described by the contaminant adsorbed per
mass of adsorbent, represented by q. However, when competition occurs for the
available sites it turns out more convenient to work in terms of the fractional cover-
age of the adsorbent surface by a monolayer of adsorbate, represented by θ = q/qm,
where qm is be the maximum adsorbate loading. For multiple components we write
θi = qi/qm,i, where different qm,i mean that the maximum mass that the adsorbent
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can retain is different for each species (if the number of sites is fixed and the con-
taminant molecules have a different weight then the total adsorbed mass will change
depending on which molecule occupies the sites).

3 Chemical reactions

We consider three reactions, in the first c1 attaches to the adsorbent material at a
rate kad,1, it may also desorb at a rate kde,1. A similar reaction occurs with c2. These
are standard adsorption reactions. Finally there is a displacement reaction where
c1 replaces adsorbed c2 or c2 replaces adsorbed c1, with a rate denoted by kre. The
resultant system is

• Reaction 1: c1 + A
kad,1−−−⇀↽−−−
kde,1

c1A; r1 = kad,1c1 (1− θ1 − θ2)− kde,1θ1

• Reaction 2: c2 + A
kad,2−−−⇀↽−−−
kde,2

c2A; r2 = kad,2c2 (1− θ1 − θ2)− kde,2θ2

• Reaction 3: c1 + c2A
kre,1−−⇀↽−−
kre,2

c1A + c2; r3 = kre,1c1θ2 − kre,2c2θ1

Note, that it is convenient to define the rate of reaction 3 in both directions,
depending on which is the free component where it starts from. Hence, kre,1 is the
rate by which free c1 replaces the already adsorbed c2A and kre,2 is the rate at which
c1A is displaced by free c2. To focus only on the case where c1 is dominant such
that it displaces nearly all c2, we will assume kre,2 = 0.

4 Mathematical model

The mathematical description of the adsorption problem with two contaminants will
be based on the model for one contaminant studied in [2, 3, 4].

For each individual contaminant i, the mass balance is defined by the advection-
diffusion equation

∂ci
∂t

+ u
∂ci
∂x

= D
∂2ci
∂x2
− αi

∂θi
∂t

(i = 1, 2) , (4.1)

where αi denotes the rate at which ci attaches to the surface, with a conversion
factor reflecting the fact that ci is a mass density, while θi is a fraction of occupied
sites. Equation (4.1) is coupled to the adsorption equations derived from the above
reaction system,

∂θ1
∂t

= r1 + r1,2 = kad,1c1 (1− θ1 − θ2)− kde,1θ1+kre,1c1θ2 , (4.2a)

∂θ2
∂t

= r2 + r2,1 = kad,2c2 (1− θ1 − θ2)− kde,2θ2−kre,1c1θ2 . (4.2b)
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The problem is closed by writing the boundary and initial conditions, which are

uci,in = uci −D
∂ci
∂x

, x = 0 , (4.3a)

∂ci
∂x

= 0 , x = L , (4.3b)

ci, θi = 0 , t = 0 . (4.3c)

Once a mathematical problem is defined, the relevant quantities are typically
scaled to obtain a non-dimensional model showing the relative importance of each
term. We choose the following scaled variables,

ci = ci,inc̄i , t = τ t̄ , x = Lx̄ , (4.4)

where τ and L are two unknown scales which will be defined below. Note, the frac-
tion of occupied sites θi are already scaled. For each contaminant i, the advection-
diffusion equation becomes

Da
∂c̄i
∂t̄

+
∂c̄i
∂x̄

= Pe−1∂
2c̄i
∂x̄2
− αL
uci,inτ

∂θi
∂t̄

, (4.5)

where we have introduced the non-dimensional Damköhler and inverse Pèclet num-
bers

Da =
L
τu

, Pe−1 =
D

Lu
. (4.6)

The form of eq. (4.5) suggests that each contaminant has a characteristic length
scale Li = uci,inτ/αi.

On the other hand, the kinetic equations become

1

τ

∂θ1
∂t̄

= kad,1c1,inc̄1 (1− θ1 − θ2)− kde,1θ1+kre,1c1,inc̄1θ2 , (4.7a)

1

τ

∂θ2
∂t̄

= kad,2c2,inc̄2 (1− θ1 − θ2)− kde,2θ2−kre,1c1,inc̄1θ2 . (4.7b)

As the primary focus is adsorption and we have defined contaminant 1 as the domi-
nant one, we will choose τ = 1/(kad,1c1,in). Similarly we choose L = L1 to yield the
governing equations

Da
∂c̄1
∂t̄

+
∂c̄1
∂x̄

= Pe−1∂
2c̄1
∂x̄2
− ∂θ1

∂t̄
, (4.8a)

Da
∂c̄2
∂t̄

+
∂c̄2
∂x̄

= Pe−1∂
2c̄2
∂x̄2
− δ∂θ2

∂t̄
, (4.8b)

∂θ1
∂t̄

= c̄1 (1− θ1 − θ2)− κ1θ1+βc̄1θ2 , (4.8c)

γ
∂θ2
∂t̄

= c̄2 (1− θ1 − θ2)− κ2θ2−γβc̄1θ2 , (4.8d)
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where

δ =
L1

L2

=
c1,in
c2,in

, γ =
kad,1c1,in
kad,2c2,in

, κi =
kde,i

kad,ici,in
, β =

kre,1
kad,1

. (4.9)

Finally, the non-dimensional boundary and initial conditions are

1 = c̄i − Pe−1∂c̄i
∂x̄

, x̄ = 0 , (4.10a)

∂c̄i
∂x̄

= 0 , x̄ = L̄ , (4.10b)

c̄i, θi = 0 , t̄ = 0 , (4.10c)

where L̄ = L/L1.

(a) γ = 0.1 (b) γ = 10

Figure 2: Dependence of the equilibrium values θi.e. on β, for different values θi.e.
can then be found by solving the linear system λ.

When equilibrium is reached and adsorption balances desorption the time deriva-
tives in eqs. (4.8c) and (4.8d) become zero, c̄i → 1 and θi → θi,e. The equilibrium
values θi,e can then be found by solving the linear system(

1 + κ1 1− β
1 1 + κ2 + γβ

)(
θ1,e
θ2,e

)
=

(
1
1

)
. (4.11)

An example of the variation of θi,e against β is shown in Fig. 2. The parameter
β = kre,1/kad,1 represents the ratio of the replacement rate to the adsorption rate
of contaminant 1. Here we keep kad,1 fixed (since this affects κ1) so that the β
variation strictly reflects a change in the replacement rate. We choose κ1 = κ2 = 0.1
and then when β = 0 both adsorption sites take the value 0.1/0.21. As the value of
β increases, so that contaminant 2 is replaced to a greater extent, the equilibrium
value of θ1 increases while that of θ2 decreases. Increasing γ ∝ kad,1 affects the
rate the asymptote is approached but also the value of the asymptote. As β →∞,
θ1,e → (1 + γ)/(1 + γ(1 + κ1)) ≈ 0.991, 0.92 for the two cases shown, while θ2,e →
κ1/(β(1 + γ(1 + κ1)) ≈ 0.
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5 Results

Typically, single contaminant column adsorption/desorption problems can be solved
analytically using the travelling wave method [2, 3, 4, 8]. However, the problem
defined by eqs. (4.8) and (4.10) is a system of 4 coupled equations and therefore in
general difficult to solve analytically (the travelling wave approach was attempted
but it did not seem to work in this case). Nonetheless, the possibility of obtaining
analytical solutions will be explored in future work. Due to the difficulty of deriving
an analytical solution and the time constraints of the study group, the system was
solved numerically using the software Matlab.

In the following work the data used comes from the LEQUIA laboratory, see [5]
and concerns the adsorption of two volatile methyl siloxanes: a linear molecule, hex-
amethyldisiloxane (L2) and a cyclic one, octamethylcyclotetrasiloxane (D4). These
are common low concentration water contaminants.

Equation (4.11) defines the equilibria, which may be written in dimensional form
as

θe,1 =
K1ce,1

(
1 + K2

K3,2
ce,1 + K2

K3,1
ce,2

)
1 +K2ce,2

(
1 + K1

K3,1
ce,1

)
+ ce,1

[
K2

K3,2
+K1

(
1 + K2

K3,2
ce,1

)] , (5.1)

θe,2 =
K2ce,2

1 +K2ce,2

(
1 + K1

K3,1
ce,1

)
+ ce,1

[
K2

K3,2
+K1

(
1 + K2

K3,2
ce,1

)] , (5.2)

where Ki = kad,i/kde,i and K3,i = kad,i/kre,1 and θe,1, θe,2, ce,1 = c1,in and ce,1 = c2,in.
Equations (5.1) and (5.2) expressed in terms of the non-dimensional parameters

read

θe,1 =
κ2 + β (1 + γ)

κ1 + β + (1 + κ1) (κ2 + βγ)
, θe,2 =

κ1
κ1 + β + (1 + κ1) (κ2 + βγ)

. (5.3)

A single-component isotherm defines a curve when plotting θe,i as a function of
ce,i. Equations (5.1) and (5.2) define the two component isotherms which form a
surface when plotting θe,i as a function of ce,1 and ce,2. These isotherms imply that
Ki = kad,i/kde,i and K3,i = kad,i/kre,1 are equilibrium constants that should not vary
as the equilibrium concentrations change. In fact Ki may be obtained from the
single component isotherms, while K3,i ∼ 1/kre,1 must be obtained from the two
component isotherms.

From the LEQUIA data [6] we obtain the parameter values presented in Table 1,
i = 1, 2 refers to D4, L2 respectively. Both Ki, qm,i were calculated from the single
component isotherm while K3,i came from the multicomponent data. However, only
three data points were provided for the multicomponent isotherm so these values may
not be as reliable as the single component ones. The high values of Ki indicate that
adsorption dominates desorption for both contaminants. The values of K3,i, between
0.15 and 1.5, demonstrate that replacement is of a similar order to adsorption.
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Table 1: Parameters obtained from the equilibrium data of [6].

Parameter Units Value
i = 1 i = 2

qm,i kg/kg 0.89 0.56
Ki m3/kg 1095 3176
K3,i - 0.15 1.5

Table 2: Optimal value of the adsorption and desorption constants (the only param-
eter fitted has been kad,1). The different data sets are related to the plots in Figure
3.

Parameter Units Value
(a) (b) (c)

kad,1 m3/(kgs) 0.057 0.04 0.075
kde,1 (×10−5) 1/s 5.20 3.65 6.85

kad,2 m3/(kgs) 0.57 0.40 0.75
kde,2 (×10−4) 1/s 1.80 1.26 2.36

kre,1 m3/(kgs) 0.38 0.267 0.50

Noting that kde,1 = kad,1/K1, kre,1 = kad,1/K3,1, kad,2 = K3,2kre,1, the values of
Table 1 allow us to reduce the number of unknown parameters in the model to one.
It is convenient to choose the adsorption constant of the first sink term kad,1 as the
fitting parameter, since this determines the time-scale τ .

In Figure 3 we compare the numerical results against experimental data after
optimising for kad,1. The squares represent the L2 breakthrough while circles rep-
resent D4. From the data we see that initially both molecules are adsorbed (note
to better show the fit we start the time axis when L2 starts to escape). As soon
as L2 escapes the concentration rises rapidly such that more L2 leaves the column
than enters. This can only occur if D4 is rapidly replacing L2. D4 continues to be
adsorbed until the column is saturated. The excellent agreement of the model with
the experimental data (with a single fitting parameter) suggests that the model is
a good candidate to describe the physical system’s behaviour.

The values of kad,1 determined to provide the fit shown in the figures is presented
in Table 2. From this and the equilibrium values of Table 1 we are able to calcu-
late all the other coefficients, i.e. the desorption, adsorption of contaminant 2 and
replacement.

In [4] it is stressed that adsorption coefficients should remain approximately
constant with respect to concentration and occupied sites. Here we see kad,1 staying
close to the average 0.057 for the three different concentrations. Given the lack
of fitting and two component isotherm data this appears to be within acceptable
bounds. It is also important to highlight that kad,1 < kre,1 < kad,2 is always satisfied.
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Figure 3: Breakthrough curves for L2 (squares) and D4 (circles). Lines represent
the result of the numerical solution. In all cases the flow rate of the carrier fluid is
250mL/min while inlet concentrations of contaminant are: (a) c1,in = 0.00302 kg/m3

and c2,in = 0.00307 kg/m3; (b) c1,in = 0.00211 kg/m3 and c2,in = 0.00420 kg/m3;
(c) c1,in = 0.00470 kg/m3 and c2,in = 0.00587 kg/m3, where subscript 1 refers to D4
and 2 to L2.
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Table 3: Optimised non-dimensional parameter values for the case of L2 and D4
siloxanes with inlet concentrations (a) c1,in = 0.00302 kg/m3 and c2,in = 0.00307
kg/m3; (b) c1,in = 0.00211 kg/m3 and c2,in = 0.00420 kg/m3; (c) c1,in = 0.00470
kg/m3 and c2,in = 0.00587 kg/m3.

Parameter Value
(a) (b) (c)

κ1 0.303 0.432 0.194
κ2 0.103 0.075 0.054
β 6.667
γ 0.098 0.050 0.080
δ 0.619 0.317 0.504

Da (×106) 3.617 2.531 5.630
Pe−1 0.072 0.050 0.095

This suggests that the second component is the first to be adsorbed, since the
adsorption of the first component is slow. However, the replacing mechanism is
faster than the adsorption of the first component, and hence the first component
gradually replaces the second one.

Finally, in Table 3 we present the values of the non-dimensional numbers defined
earlier. These can provide key information to guide future work. In particular
the value Da = O(10−6) indicates we may neglect the ∂c/∂t terms. This matches
previous work on single contaminants which showed that the concentration rapidly
settled to a steady form. Also in keeping with previous work, we find Pe−1 =
O(10−1), suggesting errors of the order 10% if neglected. In practice it has been show
that the errors are much smaller due to the imposition of the boundary conditions.
Although γ � 1, in the equations it only appears in the product γβ > 0.3, so clearly
should be retained.

6 Further work

In this report, we show how competitive adsorption can be described by extending
the single contaminant model developed by Myers et al. [4]. The resulting system
consists of 2 equations for each contaminant, one describing the transport along the
column and one focusing on the adsorption, desorption and competition mechanisms.
Due to the interaction between the contaminants, the travelling wave approach failed
and needs some rethinking before an analytical solution can be found. The numerical
solutions gave promising results as they show that the model is able to capture the
experimental behaviour. In future work we intend extend the work even further.
Starting with the two component model we need to bring in more information, such
as from the isotherms, and carry out less fitting. With a better understanding of the
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two component system a key goal is to then move on to more contaminants, which
is typically the case with flue gases.
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